Overview
The mission of Project Low Horizon was to build a horizon sensing payload using Thermopile sensor arrays. By detecting the earth’s horizon, the nadir vector of a payload can be calculated and used for attitude determination. The payload was flown on a high altitude weather balloon to 66,000ft on October 7, 2015 by members of the UAH Space Hardware Club after only 9 days of total construction.

How Thermopiles Work:
The voltage from the Thermopile follows the Stefan-Boltzmann Law of black body radiation below with a conversion between power and voltage based on the sensor’s responsivity value:

$$V_{out} = k\epsilon(T_{obs}^4 - T_{sensor}^4) * S$$

Mechanical
- 11x9x6in Styrofoam box enclosure for electronics
- 4 Sensor arrays mounted on box 90° apart
- 3 Thermopile sensors per array
- 3D printed mounts for positioning sensors

Electrical Design:
- Signal Collection
 - Instrumentation Amplifier
 - Low Pass Filter
 - 200x Gain
 - 1.27V offset for negative common mode voltage from sensor
 - Two External Multiplexers
 - ADC on Microcontroller Unit
- Time Synchronization with GPS @ 1Hz Refresh Rate
- LED in the FOV of Camera for time synchronization with GPS
- Separate AHRS unit for attitude comparison

Post Flight
- Payload successfully recovered near Section, AL.
- Sensors and code worked nominally
- Data was too noisy to use due to MUX

Future Work
- Select different MUX
- Further high altitude balloon flights
- Add higher resolution IR sensors for comparison
- Develop into a reliable Attitude Determination System for use on CubeSats

Acknowledgements
Dr. Francis Wessling – Space Hardware Club Advisor
Dr. James Miller – Physics Chair and Funding
Dr. John Gregory & Alabama Space Grant Consortium
Office of the Vice President for Research and Economic Development – Poster Funding
Ethan Hopping, Tony Christensen, Ben Shea, Chloe McFadden, Mason Manning, Kyle Renfroe, Beth Dutour, Trey McFerrin, Will Hill, Jordan Teats – Teammates and Launch Team