Development of a Multistage High-Power Rocket

Davis Hunter, Aaron Hunt, McKynzie Perry, and James Biaglow
Davis.Hunter@uah.edu
Aaron.Hunt@uah.edu
McKynzie.Perry@uah.edu
James.Biaglow@uah.edu
Space Hardware Club at the University of Alabama in Huntsville
Region II Student Conference, March 19-21, 2017, Starkville, MS
Project URSA

- Project Goal
 - Design, manufacture, test, and fly a high powered rocket with two stages to at least 30,000 feet

The Team:

- Sparky Shelton
 - Team Manager

- Davis Hunter
 - Chief Engineer

- Upper Stage
 - Aaron Hunt
 - Subsystem Lead
 - Mike Zaluki

- Lower Stage
 - McKynzie Perry
 - Subsystem Lead
 - Brendan Luke
 - Jacob Zilke

Manufacturing Liaisons

- James Biaglow
- Nick Jordan
- Kyle Renfroe
- Daniel Dorey
Concept of Operations

<table>
<thead>
<tr>
<th>#</th>
<th>Event</th>
<th>Initial Altitude (feet)</th>
<th>Max. Velocity (ft/s Mach#)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Combined Powered Ascent</td>
<td>0</td>
<td>3,370 0.93</td>
</tr>
<tr>
<td>2</td>
<td>Separation</td>
<td>2,750</td>
<td>3,000 0.83</td>
</tr>
<tr>
<td>3</td>
<td>Initial Coast</td>
<td>3,000</td>
<td>3,000 0.83</td>
</tr>
<tr>
<td>4</td>
<td>2nd Stage Powered Ascent</td>
<td>6,650</td>
<td>6,330 1.77</td>
</tr>
<tr>
<td>5</td>
<td>Coast to Apogee</td>
<td>11,000</td>
<td>6,200 1.74</td>
</tr>
<tr>
<td>6a</td>
<td>Sustainer Deploy</td>
<td>31,200</td>
<td>175</td>
</tr>
<tr>
<td>6b</td>
<td>Booster Deploy</td>
<td>6,250</td>
<td>94</td>
</tr>
<tr>
<td>7</td>
<td>Main Deploy</td>
<td>1,000</td>
<td>~25</td>
</tr>
</tbody>
</table>
System Overview

• Full System
 ▪ Total Length - 144 in
 ▪ Total Mass - 16,318 g
 ▪ Simulated Apogee - 31,232 ft
 ▪ Simulated Top Speed - 6,330 ft/s (Mach 1.77)
 ▪ Maximum Acceleration - 20.1 G
Airframe Overview

• Nose Cone
 ▪ Von Kármán Profile
 ▪ Section of Sears-Haack Body
 ▪ Optimized for Supersonic Flight

• Body Tubes
 ▪ G12 Fiberglass
 ▪ Sustainer - 0.1 inch thickness
 ▪ Booster - 0.125 inch thickness
Airframe Overview Cont.

• **Fins**
 ▪ Carbon Fiber Fins
 ▪ 1/16th inch thickness
 ▪ ABS Fin Brackets
 ▪ Aluminum bolts

• **Boattail**
 ▪ 3D Printed ABS
 ▪ Decreases pressure drag significantly
 ▪ Contains wiring for second stage ignition
Motors

• **Sustainer**
 - Aerotech L1090
 - 6 grain 54mm
 - Solid NH$_4$ClO$_4$ and White Thunder
 - 4% L (Level 2)

• **Booster**
 - Aerotech M1780
 - 4 grain 75mm
 - Solid NH$_4$ClO$_4$ and Mojave Green
 - 8% M (Level 3)

Thrust curves courtesy of thrustcurve.org
Motor Seating

- **Forward Motor Retention System**
 - Tapped forward closure
 - Eyebolt inserted through retention bulkhead
 - Bulkhead bolted into airframe

- **Centering Rings**
 - CNC machined polycarbonate
 - Eliminate need for motor tube
Recovery

• Drogue Parachutes
 ▪ Deploy at apogee of each stage
 ▪ Booster - 12 inches, 70 ft/s descent rate
 ▪ Sustainer - Drogue-less, 175 ft/s descent rate

• Main Parachutes
 ▪ Deploy at 1,000 feet AGL
 ▪ Booster - 60 inches, 27 ft/s descent rate
 ▪ Sustainer - 60 inches, 22 ft/s descent rate
Finite Element Analysis of Load Path Components

• Thrust Plates
 ▪ Yield Stress of 1060 Aluminum: 40 ksi
 ▪ Force: thrust of each motor in lbf
 ▪ Sustainer:
 – Maximum Stress 6.5 ksi
 ▪ Booster
 – Maximum Stress 3.2 ksi

• Transition
 ▪ Yield Stress of ABS Plastic: 4.5 ksi
 ▪ Force: max acceleration * mass of sustainer + weight of sustainer
 ▪ Maximum Stress: 0.438 ksi
Transition Breakdown

- Transition Components
 - ABS Aerobowl (Blue)
 - ABS Piston Plate (White)
 - Ejection Charge Plate (Grey)
- Dimensions
 - A - 3.000 inches
 - B - 2.062 inches
 - C - 6.925 inches
Sustainer Ignition Component Overview

• Sustainer Ignition
 ▪ Pyrogen Igniter (orange)
 ▪ Nylon Male/Female Connectors (pink/blue)
 ▪ Wires (red outline)
Separation and Ignition Sequence

A black powder charge pushes sustainer out of booster.

The sustainer coasts for a predetermined amount of time before ignition.

The sustainer motor is ignited by PET timer in avionics package.
Second Stage Ignition Delay

- If the velocity is too low, the risk of tilt increases
- Acceptable range between 3 and 6 seconds
- Wind conditions on launch day will be final determining factor
Avionics

Upper Stage
- **Recovery:** Two PerfectFlite Stratologgers
- **Staging:** Two MissileWorks PET 2+ Timers
- **Tracking:** SPOT Trace GPS tracker

Lower Stage
- **Recovery:** Two PerfectFlite Stratologgers
- **Tracking:** SPOT Trace GPS tracker
CNC Machining
- Haas VF-1 CNC Mill
- Coupler bulkheads, centering rings, thrust plates, retainer bulkheads, and nose cone tip

Additive Manufacturing
- Stratasys Fortus 360mc
- Avionics sled, fin brackets, boattails, and transition assembly
• Ground Testing
 ▪ Recovery ejection
 ▪ Transition
 – Binding and charge
• Flight Testing
 ▪ Upper Stage validation
 – Confirmed accuracy of sims
 – Validated hardware at Mach 0.93
 ▪ Boosted dart
 – Will fly using 1st stage final motor
 – Validate lower stage and staging event
This project would not be possible without:

- **Club Advisor**
 - Dr. Francis Wessling, *UAH MAE department*
- **Project Funding**
 - Dr. John Gregory & Alabama Space Grant Consortium
 - Dr. Mahalingam, *Dean of the UAH College of Engineering*
- **Team Members**
 - Sparky Shelton, Mike Zaluki, Brendan Luke, Jacob Zilke, Kyle Renfroe, Nick Jordan, Daniel Dorey
- **Manufacturing Advisor**
 - Steve Collins, *UAH Prototyping Specialist*
Development of a Multistage High-Power Rocket

The Space Hardware Club at UAH is a volunteer student organization dedicated to the design, development, fabricating, testing, and flying of student engineering and science hardware, to make students better engineers. Find out more about SHC Projects, and how you can help, at space.uah.edu.