CanSat 2013
Post Flight Review (PFR)

Team #1012
“Ironhide”
Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>CONOP</td>
<td>Concept of Operations</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>JTAG</td>
<td>Joint Test Action Group</td>
</tr>
<tr>
<td>MCU</td>
<td>Microcontroller Unit</td>
</tr>
<tr>
<td>PCB</td>
<td>Printed Circuit Board</td>
</tr>
<tr>
<td>PFR</td>
<td>Post Flight Review</td>
</tr>
<tr>
<td>SD</td>
<td>Secure Digital</td>
</tr>
<tr>
<td>SOE</td>
<td>Sequence of Events</td>
</tr>
</tbody>
</table>
Presentation Outline

• Systems Overview 6
• Concept of Operations and Sequence of Events 13
• Flight Data Analysis 18
• Failure Analysis 20
• Lessons Learned 23
Team Organization

Dr. Francis Wessling
Faculty Advisor

Trey McFerrin
Team Lead
Flight Electronics
Freshman, Aerospace Eng.

Markus Murdy
Student Advisor

Glenn Nesbitt,
Flight Software
Sophomore, Aerospace Eng.

Takahiro Ishitobi
Ground Station Software
Junior, Mechanical Eng.

Ali Butt
Flight Software
Graduate Student,
Aerospace Eng.

Ryo Suzuki
Ground Antenna Tracking
Sophomore, Aerospace Eng.

Evan Tingley
Mechanical Design
Fabrication
Freshman, Aerospace Eng.

Josh Thibaudeau
Fabrication
Freshman, Aerospace Eng.

Masaaki Suzuki
Descent Control
Freshman, Aerospace Eng.
Not Present: Glenn Scott Nesbitt II, Evan Tingley
SYSTEMS OVERVIEW
Mission Summary

• **Primary Objectives**
 – Land egg Intact
 – Transmit telemetry throughout flight
 • Pressure altitude
 • GPS altitude, position, time, and number of satellites tracked
 • Temperature
 • Battery Voltage
 • Flight State
 – Ground station
 • Receive and save telemetry
 • Graph in real time

• **Secondary Objective**
 – Record acceleration profile during ground impact
• CanSat
 – Payload
 • Houses and lands science payload (egg) and avionics
 • Descends under control of conical drag device
 – Container
 • Contains and protects payload during ascent, ejection, and initial descent
 • Descends under control of parasheet at 20+-1 m/s
Physical Layout - Payload

- Drag Device
- Top PCB
- Bottom PCB
- Antenna
- Egg Cylinder
- Power Switch
Physical Layout - Container

Hooks
Buzzer and Battery
Parasheet
Hinge
Top Bulkhead
Fiberglass Shroud
Components Summary - Electronics

Bottom Board
- Voltage Regulator
- Hotwire
- Radio
- Antenna
- Hotwire Control

Top Board
- JTAG
- Power LED
- Serial
- Accelerometer
- SD
- GPS
- MCU

CanSat 2013 PFR: Team 1012 (IronHide)
Components Summary – Flight Software

• Following sensors were pooled for data continuously, and tested in flight configuration:
 – GPS
 – Pressure (translates to Altitude)
 – Temperature
 – Battery Voltage

• Separation
 – Flight state machine
 – Pressure altitude
CONCEPT OF OPERATIONS & SEQUENCE OF EVENTS
Planned CONOP

- Ascent
 - CanSat (Payload within Container)
 - Parasheet
 - Container
 - Conical Drag Device
 - Payload

- Launch

- 670m, CanSat/Rocket Separation

- 20 m/s Initial Descent

- 400m, Payload/Container Separation

- Landing

CanSat 2013 PFR: Team 1012 (IronHide)
Actual CONOPs

- Same as planned
Planned SOE

- Power up
- Integration into Rocket
- Telemetry start by command
- Flight to apogee then descent to 400m
- Separation by hotwire burn
- Landing
- Measurement of ground impact acceleration
- Continued telemetry
- Power down
Actual SOE

- Power up
- Integration into Rocket
 - Telemetry start by command
- Flight to apogee then descent to 400m
- Separation by hotwire burn
- Landing
- Measurement of ground impact acceleration
 - Continued telemetry
- Power down
FLIGHT DATA ANALYSIS
• No data is available
• The SD card and radios were offline
FAILURE ANALYSIS
Failure analysis

<table>
<thead>
<tr>
<th>Issues</th>
<th>Root Cause</th>
<th>Corrective Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Range</td>
<td>Undetermined. Details on next slide</td>
<td>See next slide</td>
</tr>
<tr>
<td>SD Card</td>
<td>Though individually implemented and tested successfully, wasn’t integrated properly. Unused during flight</td>
<td>Ensure timely component integration with integration testing.</td>
</tr>
<tr>
<td>Accelerometer</td>
<td>Time constraint. Not able to work with and test sensor data</td>
<td>Manage timeline and meet deadlines as they approach</td>
</tr>
<tr>
<td>Not launched on time</td>
<td>All of the issues mentioned above, particularly Xbee (telemetry) issue</td>
<td></td>
</tr>
</tbody>
</table>
Failure Analysis – Xbee radios

• **Failure: Lack of radio range**
 – Good communications when close
 – Loss of all packets at distances greater than 20 feet

• **Possible Causes**
 – Xbee modem difference between payload and ground station
 – Incorrect configuration
 – Bad antenna connection

• **Corrective Action**
 – Range testing in flight configuration, well in advance of demonstration flight
 • Software was successful when tested on development boards
LESSONS LEARNED
Successes and Failures

• Successes
 – Pressure sensing
 – Flight state machine and decision process
 – Separation by hotwire
 – Full deployment of conical drag device (payload)
 – Stable Descent
 – Robust electrical power
 – Structural sturdiness
 – Correct mass

• Failures
 – Egg protection
 • Broken Egg
 – Communications
 • Lack of range
 – Impact acceleration measurement
 – Launch timeliness
Conclusions

• High value of extensive testing in flight configuration
 – Drag Device
 • Early conical drag devices were unsuccessful when tested during a rocket launch.
 • After resulting modifications, successful deployment and stable descent.
 – Pressure Sensor, Flight State Machine, and Hotwire
 • Vacuum chamber tested in flight configuration
 • Worked flawlessly
 – Communications
 • Untested in flight configuration
 •Failed at flight distances
• Technical knowledge gained from subsystem development
 – CNC machining
 – Circuit board layout
 – Embedded system operation
 • Hardware and software perspectives
 – Design and fabrication of reliable descent control systems
• Teamwork skills gained on a multidisciplinary team